
ESP8266WiFi library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to Wi-Fi network to start

sending and receiving data, this is a good place to start. If you are looking for more in depth details of how to

program specific Wi-Fi networking functionality, you are also in the right place.

Introduction

The Wi-Fi library for ESP8266 has been developed based on ESP8266 SDK, using naming convention and

overall functionality philosophy of Arduino WiFi library. Over time the wealth Wi-Fi features ported from

ESP9266 SDK to esp8266 / Arduino outgrew Arduino WiFi library and it became apparent that we need to

provide separate documentation on what is new and extra.

This documentation will walk you through several classes, methods and properties of ESP8266WiFilibrary. If

you are new to C++ and Arduino, don’t worry. We will start from general concepts and then move to detailed

description of members of each particular class including usage examples.

The scope of functionality offered by ESP8266WiFi library is quite extensive and therefore this description has

been broken up into separate documents marked with :arrow_right:.

Quick Start

Hopefully you are already familiar how to load Blink.ino sketch to ESP8266 module and get the LED blinking. If

not, please check this tutorial by Adafruit or another great tutorial developed by Sparkfun.

To hook up ESP module to Wi-Fi (like hooking up a mobile phone to a hot spot), you need just couple of lines

of code:

#include <ESP8266WiFi.h>

void setup()

{

 Serial.begin(115200);

 Serial.println();

 WiFi.begin("network-name", "pass-to-network");

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED)
 {

 delay(500);

 Serial.print(".");

 }

 Serial.println();

 Serial.print("Connected, IP address: ");

 Serial.println(WiFi.localIP());

}

void loop() {}

In the line WiFi.begin("network-name", "pass-to-network") replace network-name and pass-to-network with

name and password to the Wi-Fi network you like to connect. Then upload this sketch to ESP module and

open serial monitor. You should see something like:

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide
https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide/introduction

How does it work? In the first line of sketch #include <ESP8266WiFi.h> we are including ESP8266WiFi library.

This library provides ESP8266 specific Wi-Fi routines we are calling to connect to network.

Actual connection to Wi-Fi is initialized by calling:

WiFi.begin("network-name", "pass-to-network");

Connection process can take couple of seconds and we are checking for this to complete in the following loop:

while (WiFi.status() != WL_CONNECTED)
{

 delay(500);

 Serial.print(".");

}

The while() loop will keep looping while WiFi.status() is other than WL_CONNECTED . The loop will exit only if

the status changes to WL_CONNECTED .

The last line will then print out IP address assigned to ESP module by DHCP:

Serial.println(WiFi.localIP());

If you don’t see the last line but just more and more dots , then likely name or password to the Wi-

Fi network in sketch is entered incorrectly. Verify name and password by connecting from scratch to this Wi-Fi

a PC or a mobile phone.

Note: if connection is established, and then lost for some reason, ESP will automatically reconnect to last used

access point once it is again back on-line. This will be done automatically by Wi-Fi library, without any user

intervention.

That’s all you need to connect ESP8266 to Wi-Fi. In the following chapters we will explain what cool things can

be done by ESP once connected.

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://whatismyipaddress.com/dhcp

Who is Who

Devices that connect to Wi-Fi network are called stations (STA). Connection to Wi-Fi is provided by an access

point (AP), that acts as a hub for one or more stations. The access point on the other end is connected to a

wired network. An access point is usually integrated with a router to provide access from Wi-Fi network to the

internet. Each access point is recognized by a SSID (Service Set IDentifier), that essentially is the name of

network you select when connecting a device (station) to the Wi-Fi.

ESP8266 module can operate as a station, so we can connect it to the Wi-Fi network. It can also operate as a

soft access point (soft-AP), to establish its own Wi-Fi network. Therefore we can connect other stations to

such ESP module. ESP8266 is also able to operate both in station and soft access point mode. This provides

possibility of building e.g. mesh networks.

The ESP8266WiFi library provides wide collection of C++ methods (functions) and properties to configure and

operate an ESP8266 module in station and / or soft access point mode. They are described in the following

chapters.

Class Description

The ESP8266WiFi library is broken up into several classes. In most of cases, when writing the code, user is not

concerned with this classification. We are using it to break up description of this library into more manageable

pieces.

https://en.wikipedia.org/wiki/Mesh_networking
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Property_(programming)
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

Chapters below describe all function calls (methods and properties in C++ terms) listed in particular classes

of ESP8266WiFi. Description is illustrated with application examples and code snippets to show how to use

functions in practice. Most of this information is broken up into separate documents. Please follow to access

them.

Station

Station (STA) mode is used to get ESP module connected to a Wi-Fi network established by an access point.

Station class has several features to facilitate management of Wi-Fi connection. In case the connection is lost,

ESP8266 will automatically reconnect to the last used access point, once it is again available. The same

happens on module reboot. This is possible since ESP is saving credentials to last used access point in flash

(non-volatile) memory. Using the saved data ESP will also reconnect if sketch has been changed but code does

not alter the Wi-Fi mode or credentials.

https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Property_(programming)
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

Station Class documentation

Check out separate section with examples.

Soft Access Point

An access point (AP) is a device that provides access to Wi-Fi network to other devices (stations) and connects

them further to a wired network. ESP8266 can provide similar functionality except it does not have interface

to a wired network. Such mode of operation is called soft access point (soft-AP). The maximum number of

stations that can simultaneously be connected to the soft-AP can be set from 0 to 8, but defaults to 4.

The soft-AP mode is often used and an intermediate step before connecting ESP to a Wi-Fi in a station mode.

This is when SSID and password to such network is not known upfront. ESP first boots in soft-AP mode, so we

can connect to it using a laptop or a mobile phone. Then we are able to provide credentials to the target

network. Once done ESP is switched to the station mode and can connect to the target Wi-Fi.

Another handy application of soft-AP mode is to set up mesh networks. ESP can operate in both soft-AP and

Station mode so it can act as a node of a mesh network.

Soft Access Point Class documentation

Check out separate section with examples.

Scan

To connect a mobile phone to a hot spot, you typically open Wi-Fi settings app, list available networks and

pick the hot spot you need. Then enter a password (or not) and you are in. You can do the same with ESP.

Functionality of scanning for, and listing of available networks in range is implemented by the Scan Class.

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/station-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/station-examples.html
https://en.wikipedia.org/wiki/Wireless_access_point
https://bbs.espressif.com/viewtopic.php?f=46&t=481&p=1832&hilit=max_connection#p1832
https://en.wikipedia.org/wiki/Mesh_networking
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/soft-access-point-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/soft-access-point-examples.html

Scan Class documentation

Check out separate section with examples.

Client

The Client class creates clients that can access services provided by servers in order to send, receive and

process data.

Check out separate section with examples / list of functions

axTLS Client Secure - DEPRECATED

The following section details axTLS, the older TLS library used by the project. It is still supported, but

additional fixes and documentation will generally not be undertaken. See the following section for the

updated TLS client object.

The axTLS Client Secure is an extension of Client Class where connection and data exchange with servers is

done using a secure protocol. It supports TLS 1.1. The TLS 1.2 is not supported.

Secure applications have additional memory (and processing) overhead due to the need to run cryptography

algorithms. The stronger the certificate’s key, the more overhead is needed. In practice it is not possible to run

more than a single secure client at a time. The problem concerns RAM memory we can not add, the flash

memory size is usually not the issue. If you like to learn how client secure library has been developed, access

to what servers have been tested, and how memory limitations have been overcame, read fascinating issue

report #43.

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/scan-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/scan-examples.html
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Server_(computing)
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/client-examples.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/client-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html?fbclid=IwAR3zQVrFeVDr05ybX0QLNTS-BZRZUWzPjKrbc7WouI1SfOAj-BzhjM_QOj0#client
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.1
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClientSecure.h
https://github.com/esp8266/Arduino/issues/43

Check out separate section with examples / list of functions

BearSSL Client Secure and Server Secure

BearSSL::WiFiClientSecure and BearSSL::WiFiServerSecure are extensions of the

standard Client and Server classes where connection and data exchange with servers and clients using secure

protocol. It supports TLS 1.2 using a wide variety of modern ciphers, hashes, and key types.

Secure clients and servers require siginificant amounts of additional memory and processing to enable their

cryptographic algorithms. In general only a single secure client or server connection at a time can be

processed given the little RAM present on the ESP8266, but there are methods of reducing this RAM

requirement detailed in the relevant sections.

BearSSL::WiFiClientSecure contains more information on using and configuring TLS connections.

BearSSL::WiFiServerSecure discusses the TLS server mode available. Please read and understand

the BearSSL::WiFiClientSecure first as the server uses most of the same concepts.

Server

The Server Class creates servers that provide functionality to other programs or devices, called clients.

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/client-secure-examples.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/client-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html?fbclid=IwAR3zQVrFeVDr05ybX0QLNTS-BZRZUWzPjKrbc7WouI1SfOAj-BzhjM_QOj0#client
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html?fbclid=IwAR3zQVrFeVDr05ybX0QLNTS-BZRZUWzPjKrbc7WouI1SfOAj-BzhjM_QOj0#server
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-server-secure-class.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/bearssl-client-secure-class.html
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Client_(computing)

Clients connect to sever to send and receive data and access provided functionality.

Check out separate section with examples / list of functions.

UDP

The UDP Class enables the User Datagram Protocol (UDP) messages to be sent and received. The UDP uses a

simple “fire and forget” transmission model with no guarantee of delivery, ordering, or duplicate protection.

UDP provides checksums for data integrity, and port numbers for addressing different functions at the source

and destination of the datagram.

Check out separate section with examples / list of functions.

Generic

There are several functions offered by ESP8266’s SDK and not present in Arduino WiFi library. If such function

does not fit into one of classes discussed above, it will likely be in Generic Class. Among them is handler to

manage Wi-Fi events like connection, disconnection or obtaining an IP, Wi-Fi mode changes, functions to

manage module sleep mode, hostname to an IP address resolution, etc.

Check out separate section with examples / list of functions.

Diagnostics

https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/server-examples.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/server-class.html
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/udp-examples.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/udp-class.html
http://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/generic-examples.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/generic-class.html

There are several techniques available to diagnose and troubleshoot issues with getting connected to Wi-Fi

and keeping connection alive.

Check Return Codes

Almost each function described in chapters above returns some diagnostic information.

Such diagnostic may be provided as a simple boolean type true or false to indicate operation result. You

may check this result as described in examples, for instance:

Serial.printf("Wi-Fi mode set to WIFI_STA %s\n", WiFi.mode(WIFI_STA) ? "" : "Failed!");

Some functions provide more than just a binary status information. A good example is WiFi.status() .

Serial.printf("Connection status: %d\n", WiFi.status());

This function returns following codes to describe what is going on with Wi-Fi connection:

 0 : WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses

 1 : WL_NO_SSID_AVAIL in case configured SSID cannot be reached

 3 : WL_CONNECTED after successful connection is established

 4 : WL_CONNECT_FAILED if password is incorrect

 6 : WL_DISCONNECTED if module is not configured in station mode

It is a good practice to display and check information returned by functions. Application development and

troubleshooting will be easier with that.

Use printDiag

There is a specific function available to print out key Wi-Fi diagnostic information:

WiFi.printDiag(Serial);

A sample output of this function looks as follows:

Mode: STA+AP
PHY mode: N

Channel: 11

AP id: 0

Status: 5

Auto connect: 1

SSID (10): sensor-net
Passphrase (12): 123!$#0&*esP

BSSID set: 0

Use this function to provide snapshot of Wi-Fi status in these parts of application code, that you suspect may

be failing.

Enable Wi-Fi Diagnostic

By default the diagnostic output from Wi-Fi libraries is disabled when you call Serial.begin . To enable debug

output again, call Serial.setDebugOutput(true) . To redirect debug output to Serial1 instead,

call Serial1.setDebugOutput(true) . For additional details regarding diagnostics using serial ports please refer

to the documentation.

Below is an example of output for sample sketch discussed in Quick Start above

with Serial.setDebugOutput(true) :

Connectingscandone

state: 0 -> 2 (b0)

state: 2 -> 3 (0)

state: 3 -> 5 (10)
add 0

aid 1

cnt

connected with sensor-net, channel 6

dhcp client start...
chg_B1:-40

...ip:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

.

Connected, IP address: 192.168.1.10

The same sketch without Serial.setDebugOutput(true) will print out only the following:

Connecting....

Connected, IP address: 192.168.1.10

Enable Debugging in IDE

Arduino IDE provides convenient method to enable debugging for specific libraries.

What’s Inside?

If you like to analyze in detail what is inside of the ESP8266WiFi library, go directly to the ESP8266WiFi folder

of esp8266 / Arduino repository on the GitHub.

To make the analysis easier, rather than looking into individual header or source files, use one of free tools to

automatically generate documentation. The class index in chapter Class Descriptionabove has been prepared

in no time using great Doxygen, that is the de facto standard tool for generating documentation from

annotated C++ sources.

https://arduino-esp8266.readthedocs.io/en/latest/reference.html
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html?fbclid=IwAR3zQVrFeVDr05ybX0QLNTS-BZRZUWzPjKrbc7WouI1SfOAj-BzhjM_QOj0#quick-start
https://arduino-esp8266.readthedocs.io/en/latest/Troubleshooting/debugging.html
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/src
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html?fbclid=IwAR3zQVrFeVDr05ybX0QLNTS-BZRZUWzPjKrbc7WouI1SfOAj-BzhjM_QOj0#class-description
http://www.stack.nl/~dimitri/doxygen/

The tool crawls through all header and source files collecting information from formatted comment blocks. If

developer of particular class annotated the code, you will see it like in examples below.

If code is not annotated, you will still see the function prototype including types of arguments, and can use

provided links to jump straight to the source code to check it out on your own. Doxygen provides really

excellent navigation between members of library.

Several classes of ESP8266WiFi are not annotated. When preparing this document, Doxygen has been

tremendous help to quickly navigate through almost 30 files that make this library.

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
http://www.stack.nl/~dimitri/doxygen/

	ESP8266WiFi library
	Introduction
	Quick Start
	Who is Who

	Class Description
	Station
	Soft Access Point
	Scan
	Client
	axTLS Client Secure - DEPRECATED
	BearSSL Client Secure and Server Secure
	Server
	UDP
	Generic

	Diagnostics
	Check Return Codes
	Use printDiag
	Enable Wi-Fi Diagnostic
	Enable Debugging in IDE

	What’s Inside?

